Right Triangle Trigonometry

Key Points:

- We can define trigonometric functions as ratios of the side lengths of a right triangle.
- Given a right triangle with an acute angle of *t*, the first three trigonometric functions are listed as follows:

Sine
$$\sin t = \frac{\text{opposite}}{\text{hypotenuse}}$$

Cosine $\cos t = \frac{\text{adjacent}}{\text{hypotenuse}}$

Tangent $\tan t = \frac{\text{opposite}}{\text{adjacent}}$

- A common mnemonic for remembering these relationships is SohCahToa, formed from the first letters of "Sine is opposite over hypotenuse, Cosine is adjacent over hypotenuse, Tangent is opposite over adjacent."
- Trigonometric Function Values for Special Angles in a Right Triangle

t	sin t	cos t	tan t
$\frac{\pi}{6}$ or 30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$ or 45°	$\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$ or 60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

Right Triangle Trigonometry Videos:

- Evaluating Trigonometric Functions of a Right Triangle: Examples 1-2
- Evaluating Trigonometric Functions of Special Angles Using Side Lengths:
 Example 3
- Finding missing lengths using Trigonometric Ratios: Example 4
- Measuring a Distance Indirectly: Example 5

Practice Exercises

Follow the directions for each exercise below:

- 1. Use side lengths to evaluate $\cos \frac{\pi}{4}$.
- **2.** Use side lengths to evaluate $\cot \frac{\pi}{3}$.
- 3. Use side lengths to evaluate $\tan \frac{\pi}{6}$.
- **4.** Find the lengths of the other two sides of the right triangle using the given information: $cos(B) = \frac{3}{5}$, a = 6
- **5.** Find the lengths of the other two sides of the right triangle using the given information: $tan(A) = \frac{5}{9}$, b = 6

For 6-7, use Figure to evaluate the trigonometric function:

- **6.** sin(A)
- 7. tan(B)

8. Solve for the unknown sides of the given triangle:

9. Solve for the unknown sides of the given triangle:

- **10.** A 15-ft ladder leans against a building so that the angle between the ground and the ladder is 70°. How high does the ladder reach up the side of the building? Find the answer to four decimal places.
- **11.** The angle of elevation to the top of a building in Baltimore is found to be 4 degrees from the ground at a distance of 1 mile from the base of the building. Using this information, find the height of the building. Find the answer to four decimal places.
- **12.** Find the missing sides of the triangle ABC: $\sin(B) = \frac{3}{4}$, c = 12.
- **13.** Find the missing sides of the triangle:

14. The angle of elevation to the top of a building in Chicago is found to be 9 degrees from the ground at a distance of 2000 feet from the base of the building. Using this information, find the height of the building.

Answers:

1.
$$\frac{\sqrt{2}}{2}$$

2.
$$\frac{1}{\sqrt{3}}$$

3.
$$\frac{\sqrt{3}}{3}$$

5.
$$a = \frac{10}{3}, c = \frac{2\sqrt{106}}{3}$$

6.
$$\frac{11}{6}$$

7.
$$\frac{6}{11}$$

9.
$$a = \frac{5\sqrt{3}}{2}, b = \frac{5}{2}$$

13.
$$a = \frac{9}{2}, b = \frac{9\sqrt{3}}{2}$$